Analysis of EDA data using Ledalab

Mathias Benedek

University of Graz, Austria

Physiology of electrodermal activity (EDA)

- Sweat glands controlled by sympathetic nervous system
- One axon innervates about 1.28 cm² of skin (Schmelz et al., 1998)
- Each gland innervated by multiple axons (Kennedy et al., 1984; Riedl et al., 1998)
- Sweat secretion causes change in SC
- Onset of SCR > 1s after stim (efference + neuroeffector time) (Kunimoto et al., 1991; Lim et al., 2003)
- Spike density → nr of activated glands → SCR amplitude
 (Freedman et al., 1994; Nishiyama et al., 2001; Bini et al., 1980; Lidberg and Wallin, 1981)

Sudomotor nerve activity (SNA)

Skin conductance

(SC)

(Macefield & Wallin, 1996)

Analysis of EDA data using Ledalab – Mathias Benedek

Recording of EDA

constant current method

The nature of skin conductance data

Quantification of SCR amplitude

Standard methods and issues

Quantification of SCR amplitude

Standard min-max or through-to-peak method (from local minimum to local maximum)

• General underestimation of amplitude

- General underestimation of amplitude
- Misattribution with respect to response window \rightarrow overestimation

- General underestimation of amplitude
- Misattribution with respect to response window
 - \rightarrow overestimation / underestimation

- General underestimation of amplitude
- Misattribution with respect to response window
 - \rightarrow overestimation / underestimation
- Desideratum: Get true onset and amplitude of single responses

Decomposition Approaches

Decomposition Approaches – Linear Interpolation

EDR Typ 2, Auswertemöglichkeit A

Α

(Hagfors 1964, nach Boucsein, 1992)

(Barry, 1992)

Decomposition Approaches - Curve Fitting

- 10 sec data segment fitted by 4-8 parameter function (visual inspection!)
- SCR represented by sigmoid-exponetial function

Results:

- Amplitude: +15%
- Onset: -140ms

(Lim et al., 1997, Int J Psychoph)

Decomposition Approaches – Deconvolution analysis

Analysis of EDA data using Ledalab – Mathias Benedek

Basic principles of deconvolution analysis

Convolution: *Signal = Driver * IRF (impulse response function)*

SC = SMNA* IRF

Discrete Decomposition Analysis

Deconvolution: *SMNA = SC / IRF*

Discrete Decomposition Analysis

Decomposition Approaches - Deconvolution

Results:

- Automatic analysis
- Simulation: Discrimination of SCRs with time-lag > 1.3s

(Alexander et al., 2005, J Neurosc Meth)

Deconvolution (after Alexander et al., 2005)

Analysis of EDA data using Ledalab – Mathias Benedek

Rationale of SCR shape

Two-compartment diffusion model

 τ_1

A

$\dot{a} = -\frac{a}{a}$	$\dot{b} = -\frac{b}{a} + \frac{a}{a}$	
$ au_1$	$ au_2 au_1$	

Deconvolution: Effect of differences in SCR shape

Rationale of Nonnegative Deconvolution

(Benedek & Kaernbach, 2010, Psychophysiology)

Analysis of EDA data using Ledalab – Mathias Benedek

(Benedek & Kaernbach, 2010, Psychophysiology)

Analysis of EDA data using Ledalab – Mathias Benedek

(Benedek & Kaernbach, 2010, Psychophysiology)

Analysis of EDA data using Ledalab – Mathias Benedek

Analysis of EDA data using Ledalab – Mathias Benedek

General effect of deconvolution

Experiment

- N = 48
- Noise bursts (95 dB, 120ms)
- ISI = 4, 8, 16, 32 sec

Event-related response by ISI

Results:

Amplitude: + 17% Onset: -340ms

Features:

- Physiological rationale of SCR shape
- Estimation of tonic component
- Estimation of inter-individual SCR shape (τ)
- Full component-model of raw SC data
- Unbiased estimation of SCR-magnitude
- Facilitates study of physiological model of SCR

Challenges:

- Sensitive to data quality (e.g., artifacts)
- Time consuming procedure
- Driver may not fully reflect SNA

Rationale of Continuous Decomposition Analysis

Continuous Decomposition Analysis (Phasic Driver Extraction)

Analysis of EDA data using Ledalab – Mathias Benedek

Continuous Decomposition Analysis (Phasic Driver Extraction)

Integrated SCR (ISCR): Time integral of phasic driver over response window

(Benedek & Kaernbach, 2010, J Neurosc Methods)

Event-related response by ISI

SCR amplitude by method

Simulation: Effect of SCR offset on amplitude

Simulation: Effect of SCR offset on amplitude

Continuous Decomposition Analysis

Features:

- Physiological rationale of SCR shape
- Estimation of tonic component
- Estimation of inter-individual SCR shape (τ)
- Full component-model of raw SC data
 - \rightarrow Separation of continuous tonic and phasic data
- Unbiased estimation of SCR-magnitude
 + Consideration of continuous response information
- (Facilitates study of physiological model of SCR)

Challenges:

- Sensitive to data quality (e.g., artifacts) \rightarrow Robust
- Time consuming procedure \rightarrow Fast and efficient
- Driver may not fully reflect SMNA \rightarrow Driver may reflect SMNA
- Avoids quantization effect

Documentation and References

On **Continuous Decomposition Analysis (CDA) method** and/or **Avoiding biases of classic peak detection methods**:

• Benedek, M. & Kaernbach, C. (2010). A continuous measure of phasic electrodermal activity. *Journal of Neuroscience Methods*, 190, 80-91. [link]

On **Discrete Deconvolution Analysis (DDA) method** and/or the **Consideration of the individual physiological shape of the SCR** :

• Benedek, M. & Kaernbach, C. (2010). Decomposition of skin conductance data by means of nonnegative deconvolution. *Psychophysiology*, *47*, 647-658. [link]

Psychophysiology, 49 (2012), 1017–1034. Wiley Periodicals, Inc. Printed in the USA. Copyright © 2012 Society for Psychophysiological Research DOI: 10.1111/j.1469-8986.2012.01384.x

COMMITTEE REPORT

Publication recommendations for electrodermal measurements

SOCIETY FOR PSYCHOPHYSIOLOGICAL RESEARCH AD HOC COMMITTEE ON ELECTRODERMAL MEAS-URES: WOLFRAM BOUCSEIN,^a DON C. FOWLES,^b SVERRE GRIMNES,^{cd} GERSHON BEN-SHAKHAR,^e WALTON T. ROTH,^f MICHAEL E. DAWSON,^g and DIANE L. FILION^h

^aUniversity of Wuppertal, Wuppertal, Germany
 ^bUniversity of Iowa, Iowa City, Iowa, USA
 ^cUniversity of Oslo, Oslo, Norway
 ^aDepartment of Clinical and Biomedical Engineering, Rikshospitalet, Oslo University Hospital HF, Oslo, Norway
 ^aDe Hebrew University of Jerusalem, Jerusalem, Israel
 ⁱVA Palo Alto Health Care System, Palo Alto, California, USA
 ^aUniversity of Southerm California, Los Angeles, California, USA
 ^bUniversity of Missouri–Kansas City, Kansas City, Missouri, USA

Using Ledalab for EDA analysis

Ledalab

- Open Software (Matlab is required)
- Download at website: <u>www.ledalab.de</u>
 - Software updates
 - Online documentation

Ledalab 1	
INTRODUCTION - SOFTWARE - DOCUMENTATION - FORUM/LIST - LINKS - CONTACT	
INTRODUCTION	
Ledalab	
 is a Matlab-based software for the analysis of skin conductance data (SC; i.e., EDA, GSR). can import various file formats (including BioPac, Biotrace, CassyLab, PortiLab, PsychLab, VarioPort, VisionAnalyzer, VitaPort) and provides many preprocessing functions. performs event-related analysis relative to events/marker and returns various parameters of phasic and tonic activity. can be used via an interactive GUI or in an efficient batch-mode via the Matlab command window. currently provides two EDA analysis methods: (1) The Continuous Decomposition Analysis (CDA) performs a decomposition of SC data into continuous signals of phasic and tonic activity. This method takes advantage from retrieving the signal characteristics of the underlying sudomotor nerve activity (SNA). It is beneficial for all analyses aiming at unbiased scores of phasic and tonic activity. (2) The Discrete Decomposition Analysis (DDA) performs a decomposition of SC data into distinct phasic components and a tonic component by means of Nonnegative Deconvolution. This method is especially advantageous for the study of the SCR shape. has been used at more than 60 universities and research facilities (including Aachen, Atlanta, Austin, Bangalore Beijing Berlin Bern Bielefeld Budapest Buenos Aires, Coimbra, Corpell, Delft, Dresden 	

EDA Analysis Software: Ledalab

Analysis of EDA data using Ledalab – Mathias Benedek

Graphical user interface (GUI)

Data Import

Ledalab supports the import of various data formats (see screenshot).

📣 Ledalab V3.	4.5: D:\M\Forschu	ung\Project\I	Matlab\	leda\Work	shop data\ITI_02.txt*	
File Preproc	essing Settings	Analysis	Tools	Results	Info	
Open		St	rg+0			_
Import Da	ta		•	BioPa	c (*.acq)	
Import Ev	ents		•	BioPa	c (Matlab-Export) (*.mat)	
Export Dat	ta		•	BioTra	ace (Text Export)	
Save		St	rg+S	Cassy	Lab (.lab)	
Save as				PortiL	.ab (Text Export)	
Exit		St	rg+X	Psych	Lab (Text Export)	
G01_0.ma	t			Vario	Port (.vpd)	
ITI_02.ma	t			Vision	n Analyzer (Matlab Export)	
1b502_Pre	PB_SC.mat			VitaPo	ort (Text Export)	
1b502_Pre	PB_SC_AdaptSmo	oth.mat		Matla	b File (*.mat)	200
1b502_Pre	PB_SC_Downs32.r	mat		Text T	[ype1 [Time SC (Marker)]	
				Text T	[ype 2 [SC (Marker)]	
11.6	_	Ę	(40)	Text T User-(ype 3 (Manual definition) defined Data	
-			₽ _			

Analysis of EDA data using Ledalab – Mathias Benedek

Preprocessing functions

Ledalab can be used for data preprocessing including cutting, downsampling, smoothing and artifact correction.

📣 Le	dalab	V3.4.3: D:\	M\Forschu	ng\Project\	Matla
File	Pre	processing	Settings	Analysis	Тос
		Cut data (k	eep selectio	on)	
		Downsam	oling		
		Manual Sm	noothing		
		Adaptive s	moothing		
		Apply Filte	r		
		Artifact co	rrection	Strg+A	
-	ž	4			_

Analysis

- Methods:
 - Continuous Decomposition Analysis (recommended)
 - Discrete Decomposition Analysis (Nonnegative Deconvolution)
 - Min-max analysis (trough-to-peak): always included
- Steps:
 - Run analysis
 - Optimize analysis
 - Apply to data

Analysis of EDA data using Ledalab – Mathias Benedek

Results Export

- Export event-related activation to Excel, Text, or Matlab file
- Many parameters of phasic and tonic activity (see online documentation)
- Additionally, you can save a list of detected SCRs

Export Event-Related Activation	
SCR window relative to event (start - end) [sec]:	1.00 4.00
SCR amplitude minimum [muS]:	0.05
Export	Excel-File 💌

	А	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	
1	Event.Nr	Event.NID	Event.Name	CDA.nSCR	CDA.Latency	CDA.AmpSur	CDA.SCR [mi	CDA.ISCR [m	CDA.Tonic [n	TTP.nSCR	TTP.Latency	TTP.AmpSun	Global.Mean	Global.MaxD	eflection [mu	uS]
2	1	40	40	2	1,96875	2,26055825	4,78365526	14,3509658	8,87134346	1	1,09375	2,43218966	9,70570103	2,192		
3	2	6	6	3	1,9375	1,54782657	3,08160458	9,24481373	8,94547752	1	1,71875	0,73850732	11,1500515	0,744		
	3	40	40	1	2,03125	1,92769854	4,05411157	12,1623347	9,50071467	0		0	10,8609691	1,885		
	4	8	8	2	2	1,10829658	2,30122665	6,90367996	9,56859947	1	1,5	0,88077371	10,6203196	0,882		
	5	40	40	3	1,9375	1,51575672	3,12254105	9,36762316	9,90697815	1	1,5	1,43171832	10,6008351	1,362		
	6	4	4	1	2,0625	0,65561007	1,31329089	3,93987267	9,90414345	1	1,90625	0,25978327	11,3316289	0,263		
8	7	40	40	1	2,15625	1,31319598	3,13263561	9,39790684	9,80841218	1	1,375	1,69976442	10,4420309	1,335		
9	8	2	2	1	2,09375	0,64604663	1,35570432	4,06711295	9,8025814	0		0	11,3358557	0,742		
	9	40	40	1	1,96875	1,14867999	2,29203518	6,87610555	9,28853441	1	1,1875	1,07693163	9,97553608	1,079		
11	10	8	8	1	2,03125	0,5187511	0,98023017	2,94069052	9,26552051	1	1,65625	0,33674132	10,0179381	0,338		
12	11	40	40	2	2,09375	2,15988871	3,70534434	11,116033	8,78265404	1	1,125	1,9204384	9,4421134	1,487		
13	12	2	2	1	2,03125	0,7844172	1,76229338	5,28688014	8,77417991	0		0	10,4496598	0,972		
14	13	40	40	1	2,40625	0,25911277	0,49789999	1,49369998	8,61134059	1	1,8125	0,19614261	8,83040206	0,197		
15	14	6	6	1	2,34375	1,03895703	2,04301844	6,12905533	8,59005273	1	1,53125	0,97918108	9,16015464	0,981		
16	15	40	40	1	2,25	0,5817176	1,19414358	3,58243073	8,18418926	1	1,65625	0,53804267	8,46364948	0,539		
17	16			1	2	0.16060101	0.25015110	1.07445356	0 10501007	0		0	0 56401050	0.022		

What EDA scores to use?

Ledalab computes classic and novel scores of phasic and tonic EDA.

EDA scores based on decomposition methods are claimed to be more sensitive (Benedek & Kaernbach, 2010a,b).

They include (for Continuous Decomposition Analysis) e.g.:

- AmpSum = Sum of amplitudes of all reconvolved SCR with onset in response window (cf. ITTP in Benedek & Kaernbach, 2010b)
- ISCR = Integrated phasic driver activity within response window (thought to correspond to total average sudomotor nerve activity SMNA; Benedek & Kaernbach, 2012b)
- **SCR** = Average phasic driver activity within response window (equals ISCR divided by size of response window; units are muS)
- .. and more

But classic EDA measures such as min-max/through-to-peak amplitudes are always provided additionally if you wish to fall back on them (they do not rely decomposition methods, but on simple peak detection).

Command line batch-analysis

- Run *Ledalab* directly from Matlab command window
- Analyze all files in folder

Command Window

• Use Ledalab functions related to import, preprocessing, analysis, and results export

🏂 >> Ledalab('D:\M\Forschung\Project\Matlab\leda\Workshop data', 'open', 'biotrace', 'downsample',2, 'analyze','CDA', 'optimize',2, 'export era',[1 4 .01 1])

Command Window 11:34:56: Starting Ledalab batch for D:\M\Forschung\Project\Matlab\leda\Workshop data\ (10 file/s) 11:34:56: Batch-Analyzing ITI 01.txt Optimized parameter: 1.99 5.61 Error: 0.734 (Initial parameter: 1.00 3.75 Error: 1.467) Optimized parameter: 2.04 5.40 Error: 0.731 (Initial parameter: 1.00 2.00 Error: 2.750) Final optimized parameter: 2.04 5.40 Error: 0.731 11:35:08: Batch-Analyzing ITI 02.txt Optimized parameter: 0.96 2.17 Error: 0.681 (Initial parameter: 1.00 3.75 Error: 0.980) Optimized parameter: 1.42 1.70 Error: 0.668 (Initial parameter: 1.00 2.00 Error: 0.826) Final optimized parameter: 1.42 1.70 Error: 0.668 11:35:16: Batch-Analyzing ITI 03.txt Optimized parameter: 0.52 0.73 Error: 0.404 (Initial parameter: 1.00 3.75 Error: 8.832) Optimized parameter: 0.40 0.88 Error: 0.410 (Initial parameter: 1.00 2.00 Error: 4.030) Final optimized parameter: 0.52 0.73 Error: 0.404 11:35:23: Batch-Analyzing ITI 04.txt

Aggregate and save results across files

This is done with the separate script EDA_Results.m (located in Ledalab main directory)

Steps:

- 1. Analyze all your EDA data with Ledalab (e.g. using Continous Decomposition Analysis CDA)
- Export event-related activation results (to *_era.mat files) (steps 1 and 2 can be done with the command line batch analysis)
- 3. Edit script EDA_Results.m
 - a) Indicate directory where exported result files (*_era.mat) are located
 - b) Indicate whether to use event-IDs or event-names for identifying events (default = event-IDs)
 - c) Select, add, or modify EDA scores to be saved
- 4. Run script EDA_Results.m (in Matlab command window) to save averaged event-related scores of all experiment subjects to one Excel-file for further statistical analysis

Direct access to all (raw and analyzed) data

All data can be accessed via the Matlab command window. This could be used for further processing with own scripts.

and Window	
>> global leda2	>> leda2.analysis
>> leda2.data	
	ans =
ans =	
	tau: [0.8018 2.3359]
events: [1x1 struct]	smoothwin: 0.2000
conductance: [1x1 struct]	tonicGridSize: 10
time: [1x1 struct]	driver: [1x21663 double]
N: 21663	tonicDriver: [1x21663 double]
samplingrate: 32	remainder: [1x21663 double]
Samplinglade. 02	kernel: [1x569 double]
<pre>>> leda2 data events event(1)</pre>	phasicData: [1x21663 double]
>> ieuaz.uada.events.event(i)	tonicData: [1x21663 double]
ang =	phasicDriverRaw: [1x21663 double]
alis –	error: [1x1 struct]
time, 71 0275	opt history: [1x1 struct]
cime: /1.93/5	method: 'sdeco'
nid: 40	impulseOnset: [1x538 double]
name: 40	impulsePeakTime: [1x538 double]
userdata: []	impulseAmp: [1x538 double]
I	onset: [1x538 double]
>>	amp: [1x538 double]
	peakTime: [1x538 double]